11 resultados para Wart Virus Vaccine

em CentAUR: Central Archive University of Reading - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Virus capsids are primed for disassembly, yet capsid integrity is key to generating a protective immune response. Foot-and-mouth disease virus (FMDV) capsids comprise identical pentameric protein subunits held together by tenuous noncovalent interactions and are often unstable. Chemically inactivated or recombinant empty capsids, which could form the basis of future vaccines, are even less stable than live virus. Here we devised a computational method to assess the relative stability of protein-protein interfaces and used it to design improved candidate vaccines for two poorly stable, but globally important, serotypes of FMDV: O and SAT2. We used a restrained molecular dynamics strategy to rank mutations predicted to strengthen the pentamer interfaces and applied the results to produce stabilized capsids. Structural analyses and stability assays confirmed the predictions, and vaccinated animals generated improved neutralizing-antibody responses to stabilized particles compared to parental viruses and wild-type capsids.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Influenza virus epidemics occur on an annual basis and cause severe disease in the very young and old. The vaccine administered to high-risk groups is generated by amplifying reassortant viruses, with chronologically relevant viral surface antigens, in eggs. Every 20 years or so, influenza pandemics occur causing widespread fatality in all age groups. These viruses display novel viral surface antigens acquired from a zoonotic source, and vaccination against them poses new issues since production of large amounts of a respiratory virus containing novel surface antigens could be dangerous for those involved in manufacture. To minimise risks, it is advisable to use a virus whose genetic backbone is highly attenuated in man. Traditionally, the A/PR/8/34 strain of virus is used, however, the genetic basis of its attenuation is unclear. Cold-adapted (CA) strains of the influenza virus are all based on the H2N2 subtype, itself a virus with pandemic potential, and again the genetic basis of temperature sensitivity is not yet established. Reverse genetics technology allows us to engineer designer influenza viruses to order. Using this technology, we have been investigating mutations in several different gene segments to effectively attenuate potential vaccine strains allowing the safe production of vaccine to protect against the next pandemic. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Disulfide bonding contributes to the function and antigenicity of many viral envelope glycoproteins. We assessed here its significance for the hepatitis C virus E2 envelope protein and a counterpart deleted for hypervariable region-1 (HVR1). All 18 cysteine residues of the antigens were involved in disulfides. Chemical reduction of up to half of these disulfides was compatible with anti-E2 monoclonal antibody reaction, CD81 receptor binding, and viral entry, whereas complete reduction abrogated these properties. The addition of 5,5'-dithiobis-2-nitrobenzoic acid had no effect on viral entry. Thus, E2 function is only weakly dependent on its redox status, and cell entry does not require redox catalysts, in contrast to a number of enveloped viruses. Because E2 is a major neutralizing antibody target, we examined the effect of disulfide bonding on E2 antigenicity. We show that reduction of three disulfides, as well as deletion of HVR1, improved antibody binding for half of the patient sera tested, whereas it had no effect on the remainder. Small scale immunization of mice with reduced E2 antigens greatly improved serum reactivity with reduced forms of E2 when compared with immunization using native E2, whereas deletion of HVR1 only marginally affected the ability of the serum to bind the redox intermediates. Immunization with reduced E2 also showed an improved neutralizing antibody response, suggesting that potential epitopes are masked on the disulfide-bonded antigen and that mild reduction may increase the breadth of the antibody response. Although E2 function is surprisingly independent of its redox status, its disulfide bonds mask antigenic domains. E2 redox manipulation may contribute to improved vaccine design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A major problem in hepatitis C virus (HCV) immunotherapy or vaccine design is the extreme variability of the virus. We identified human monoclonal antibodies (mAbs) that neutralize genetically diverse HCV isolates and protect against heterologous HCV quasispecies challenge in a human liver-chimeric mouse model. The results provide evidence that broadly neutralizing antibodies to HCV protect against heterologous viral infection and suggest that a prophylactic vaccine against HCV may be achievable.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Although H5N1 avian influenza viruses pose the most obvious imminent pandemic threat, there have been several recent zoonotic incidents involving transmission of H7 viruses to humans. Vaccines are the primary public health defense against pandemics, but reliance on embryonated chickens eggs to propagate vaccine and logistic problems posed by the use of new technology may slow our ability to respond rapidly in a pandemic situation. Objectives: We sought to generate an H7 candidate vaccine virus suitable for administration to humans whose generation and amplification avoided the use of eggs. Methods: We generated a suitable H7 vaccine virus by reverse genetics. This virus, known as RD3, comprises the internal genes of A/Puerto Rico/8/34 with surface antigens of the highly pathogenic avian strain A/Chicken/Italy/13474/99 (H7N1). The multi-basic amino acid site in the HA gene, associated with high pathogenicity in chickens, was removed. Results: The HA modification did not alter the antigenicity of the virus and the resultant single basic motif was stably retained following several passages in Vero and PER. C6 cells. RD3 was attenuated for growth in embryonated eggs, chickens, and ferrets. RD3 induced an antibody response in infected animals reactive against both the homologous virus and other H7 influenza viruses associated with recent infection by H7 viruses in humans. Conclusions: This is the first report of a candidate H7 vaccine virus for use in humans generated by reverse genetics and propagated entirely in mammalian tissue culture. The vaccine has potential use against a wide range of H7 strains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, a genomic analysis of full VP1 sequence region of 15 clinical re-isolates (14 healthy vaccinees and one bone marrow tumor patient) was conducted, aiming to the identification of mutations and to the assessment of their impact on virus fitness, providing also insights relevant with the natural evolution of Sabin strains. Clinical re-isolates were analyzed by RT-PCR, sequencing and computational analysis. Some re-isolates were characterized by an unusual mutational pattern in which non-synonymous mutations outnumbered the synonymous ones. Furthermore, the majority of amino-acid substitutions were located in the capsid exterior, specifically in N-Ags, near N-Ags and in the north rim of the canyon. Also mutations, which are well-known determinants of attenuation, were identified. The results of this study propose that some re-isolates are characterized by an evolutionary pattern in which non-synonymous mutations with a direct phenotypic impact on viral fitness are fixed in viral genomes, in spite of synonymous ones with no phenotypic impact on viral fitness. Results of the present retrospective characterization of Sabin clinical re-isolates, based on the full VP1 sequence, suggest that vaccine-derived viruses may make their way through narrow breaches and may evolve into transmissible pathogens even in adequately immunized populations. For this reason increased poliovirus laboratory surveillance should be permanent and full VP1 sequence analysis should be conducted even in isolates originating from healthy vaccinees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Determination of varicella zoster virus (VZV) immunity in healthcare workers without a history of chickenpox is important for identifying those in need of vOka vaccination. Post immunisation, healthcare workers in the UK who work with high risk patients are tested for seroconversion. To assess the performance of the time-resolved fluorescence immunoassay (TRFIA) for the detection of antibody in vaccinated as well as unvaccinated individuals, a cut-off was first calculated. VZV-IgG specific avidity and titres six weeks after the first dose of vaccine were used to identify subjects with pre-existing immunity among a cohort of 110 healthcare workers. Those with high avidity (≥60%) were considered to have previous immunity to VZV and those with low or equivocal avidity (<60%) were considered naive. The former had antibody levels ≥400mIU/mL and latter had levels <400mIU/mL. Comparison of the baseline values of the naive and immune groups allowed the estimation of a TRFIA cut-off value of >130mIU/mL which best discriminated between the two groups and this was confirmed by ROC analysis. Using this value, the sensitivity and specificity of TRFIA cut-off were 90% (95% CI 79-96), and 78% (95% CI 61-90) respectively in this population. A subset of samples tested by the gold standard Fluorescence Antibody to Membrane Antigen (FAMA) test showed 84% (54/64) agreement with TRFIA.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional vaccines such as inactivated or live attenuated vaccines, are gradually giving way to more biochemically defined vaccines that are most often based on a recombinant antigen known to possess neutralizing epitopes. Such vaccines can offer improvements in speed, safety and manufacturing process but an inevitable consequence of their high degree of purification is that immunogenicity is reduced through the lack of the innate triggering molecules present in more complex preparations. Targeting recombinant vaccines to antigen presenting cells (APCs) such as dendritic cells however can improve immunogenicity by ensuring that antigen processing is as efficient as possible. Immune complexes, one of a number of routes of APC targeting, are mimicked by a recombinant approach, crystallizable fragment (Fc) fusion proteins, in which the target immunogen is linked directly to an antibody effector domain capable of interaction with receptors, FcR, on the APC cell surface. A number of virus Fc fusion proteins have been expressed in insect cells using the baculovirus expression system and shown to be efficiently produced and purified. Their use for immunization next to non-Fc tagged equivalents shows that they are powerfully immunogenic in the absence of added adjuvant and that immune stimulation is the result of the Fc-FcR interaction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foot-and-mouth disease virus (FMDV) is a significant economically and distributed globally pathogen of Artiodactyla. Current vaccines are chemically inactivated whole virus particles that require large-scale virus growth in strict bio-containment with the associated risks of accidental release or incomplete inactivation. Non-infectious empty capsids are structural mimics of authentic particles with no associated risk and constitute an alternate vaccine candidate. Capsids self-assemble from the processed virus structural proteins, VP0, VP3 and VP1, which are released from the structural protein precursor P1-2A by the action of the virus-encoded 3C protease. To date recombinant empty capsid assembly has been limited by poor expression levels, restricting the development of empty capsids as a viable vaccine. Here expression of the FMDV structural protein precursor P1-2A in insect cells is shown to be efficient but linkage of the cognate 3C protease to the C-terminus reduces expression significantly. Inactivation of the 3C enzyme in a P1-2A-3C cassette allows expression and intermediate levels of 3C activity resulted in efficient processing of the P1-2A precursor into the structural proteins which assembled into empty capsids. Expression was independent of the insect host cell background and leads to capsids that are recognised as authentic by a range of anti-FMDV bovine sera suggesting their feasibility as an alternate vaccine.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Foot-and-mouth disease remains a major plague of livestock and outbreaks are often economically catastrophic. Current inactivated virus vaccines require expensive high containment facilities for their production and maintenance of a cold-chain for their activity. We have addressed both of these major drawbacks. Firstly we have developed methods to efficiently express recombinant empty capsids. Expression constructs aimed at lowering the levels and activity of the viral protease required for the cleavage of the capsid protein precursor were used; this enabled the synthesis of empty A-serotype capsids in eukaryotic cells at levels potentially attractive to industry using both vaccinia virus and baculovirus driven expression. Secondly we have enhanced capsid stability by incorporating a rationally designed mutation, and shown by X-ray crystallography that stabilised and wild-type empty capsids have essentially the same structure as intact virus. Cattle vaccinated with recombinant capsids showed sustained virus neutralisation titres and protection from challenge 34 weeks after immunization. This approach to vaccine antigen production has several potential advantages over current technologies by reducing production costs, eliminating the risk of infectivity and enhancing the temperature stability of the product. Similar strategies that will optimize host cell viability during expression of a foreign toxic gene and/or improve capsid stability could allow the production of safe vaccines for other pathogenic picornaviruses of humans and animals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particulate antigen assemblies in the nanometer range and DNA plasmids are particularly interesting for designing vaccines. We hypothesised that a combination of these approaches could result in a new delivery method of gp160 envelope HIV-1 vaccine which could combine the potency of virus-like particles (VLPs) and the simplicity of use of DNA vaccines. Characterisation of lentivirus-like particles (lentiVLPs) by western blot, dynamic light scattering and electron microscopy revealed that their protein pattern, size and structure make them promising candidates for HIV-1 vaccines. Although all particles were similar with regard to size and distribution, they clearly differed in p24 capsid protein content suggesting that Rev may be required for particle maturation and Gag processing. In vivo, lentiVLP pseudotyping with the gp160 envelope or with a combination of gp160 and VSV-G envelopes did not influence the magnitude of the immune response but the combination of lentiVLPs with Alum adjuvant resulted in a more potent response. Interestingly, the strongest immune response was obtained when plasmids encoding lentiVLPs were co-delivered to mice muscles by electrotransfer, suggesting that lentiVLPs were efficiently produced in vivo or the packaging genes mediate an adjuvant effect. DNA electrotransfer of plasmids encoding lentivirus-like particles offers many advantages and appears therefore as a promising delivery method of HIV-1 vaccines. Keywords:VLP, Electroporation, Electrotransfer, HIV vaccine, DNA vaccine